Class (I) Phosphoinositide 3-Kinases in the Tumor Microenvironment

نویسندگان

  • David Gyori
  • Tamara Chessa
  • Phillip T. Hawkins
  • Len R. Stephens
چکیده

Phosphoinositide 3-kinases (PI3Ks) are a diverse family of enzymes which regulate various critical biological processes, such as cell proliferation and survival. Class (I) PI3Ks (PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ) mediate the phosphorylation of the inositol ring at position D3 leading to the generation of PtdIns(3,4,5)P3. PtdIns(3,4,5)P3 can be dephosphorylated by several phosphatases, of which the best known is the 3-phosphatase PTEN (phosphatase and tensin homolog). The Class (I) PI3K pathway is frequently disrupted in human cancers where mutations are associated with increased PI3K-activity or loss of PTEN functionality within the tumor cells. However, the role of PI3Ks in the tumor stroma is less well understood. Recent evidence suggests that the white blood cell-selective PI3Kγ and PI3Kδ isoforms have an important role in regulating the immune-suppressive, tumor-associated myeloid cell and regulatory T cell subsets, respectively, and as a consequence are also critical for solid tumor growth. Moreover, PI3Kα is implicated in the direct regulation of tumor angiogenesis, and dysregulation of the PI3K pathway in stromal fibroblasts can also contribute to cancer progression. Therefore, pharmacological inhibition of the Class (I) PI3K family in the tumor microenvironment can be a highly attractive anti-cancer strategy and isoform-selective PI3K inhibitors may act as potent cancer immunotherapeutic and anti-angiogenic agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PI3K at the crossroads of tumor angiogenesis signaling pathways

Tumors need blood vessels for their growth, thus providing the rationale for antiangiogenic therapy in cancer treatment. However, intrinsic and acquired resistance and low response rates have turned out to be major limitations of antiangiogenic therapy. This emphasizes the need to further understand how the vasculature in cancer can be targeted. Although endothelial cells (ECs) rely on multiple...

متن کامل

Supernatants From Human Osteosarcoma Cultured Cell Lines Induce Modifications in Growth and Differentiation of THP-1 Cells and Phosphoinositide- Specific Phospholipase C Enzymes

Introduction: Introduction: Molecular components within the microenvironment act upon cell growth, survival/apoptosis, and proliferation. Immune system cells respond to molecules produced by the tumor and released in the surrounding microenvironment, such as cytokines, chemokines, and growth factors. This study aimed to identify the effects of tumor environment on monocyte-macrophage cell linea...

متن کامل

Supernatants From Human Osteosarcoma Cultured Cell Lines Induce Modifications in Growth and Differentiation of THP-1 Cells and Phosphoinositide- Specific Phospholipase C Enzymes

Introduction: Introduction: Molecular components within the microenvironment act upon cell growth, survival/apoptosis, and proliferation. Immune system cells respond to molecules produced by the tumor and released in the surrounding microenvironment, such as cytokines, chemokines, and growth factors. This study aimed to identify the effects of tumor environment on monocyte-macrophage cell linea...

متن کامل

Regulation of membrane traffic by phosphoinositide 3-kinases.

Phosphoinositide (PI) 3-kinases control essential cellular functions such as cytoskeletal dynamics, signal transduction and membrane trafficking. FYVE, PX and PH domains mediate the binding of effector proteins to the lipid products of PI 3-kinases. Recent studies have provided significant insights into the roles of PI 3-kinases, their catalytic products and their downstream effectors in membra...

متن کامل

A novel phosphatidylinositol(3,4,5)P3 pathway in fission yeast

The mammalian tumor suppressor, phosphatase and tensin homologue deleted on chromosome 10 (PTEN), inhibits cell growth and survival by dephosphorylating phosphatidylinositol-(3,4,5)-trisphosphate (PI[3,4,5]P3). We have found a homologue of PTEN in the fission yeast, Schizosaccharomyces pombe (ptn1). This was an unexpected finding because yeast (S. pombe and Saccharomyces cerevisiae) lack the cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017